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Abstract
A crowd simulator that generates realistic crowds with various movement patterns and environmental adaptability is urgently
desired but underdeveloped for the applications of video games, urban visualization, autonomous driving, and robot navigation
test. In this work, we present a novel velocity-based framework based on data-driven optimization to build dynamic crowd
simulation that allows interactive control of global navigation, local collision avoidance, and group formation. An agent’s
adaptive decision-making regarding its goals and dynamic local environment is formulated as an optimization problem which
is solved by finding an optimal velocity from the real-world crowd velocity dataset. Each component that affects an agent’s
movement is integrated into a velocity-based crowd energy metric to measure the similarity between the agent’s required
simulated velocity and a given velocity sample. The proposed model can simulate thousands of agents at interactive rates.
In addition, the framework is general and scalable to be integrated with various crowd simulation methods to meet the
requirements of various kinds of robot navigation test. We validate our approach through simulation experiments in robot
navigation scenarios, as well as comparisons to real-world crowd data and popular crowd simulation methods.

Keywords Crowd animation · Data driven · Motion control · Optimization

1 Introduction

Incorporating realistic crowds into virtual environments has
received increasing attention from a variety of research
communities in recent years, including, but not limited to
computer graphics, visual reality, urban planning, emergency
simulation, virtual robotic navigation test, and behavioral
science. Human crowds exhibit highly complex behaviors
driven by adaptive individual decisions of agentswith respect
to their goals, environmental obstacles, and other nearby
agents. Simulating such unconsciously self-organized crowd
movement in a dynamically changing environment is highly
desired.
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A number of crowd simulationmethods, includingmacro-
scopic [25,35], andmicroscopic approaches [11,34,37], have
been developed to model and simulate crowd dynamics.
However, these methods focus on modeling the individual
behaviors without referring to real-world crowd trajectory
data, which results in simulations that may not realistically
resemble real-world crowd scenarios.

To date, several data-driven approaches have been pro-
posed to enhance the realism of crowdmovements in simula-
tions. Thesemethods [9,12,16,17,20,21]mainly trainmodels
for specific scenarios and apply them to similar scenarios,
usually resulting in poor scenario adaptability. To address
this problem, deep learning-based methods [18,36] have
been proposed for scene-agnostic crowd simulation. How-
ever, convincing simulation results require large amounts of
real-world data from multiple scenarios, and model train-
ing is computationally expensive. More recently, Ren et al.
[32] proposed a data-driven optimization method to generate
plausible behaviors for heterogeneous multi-agent scenarios.
Since the model simulates the general behavior of different
types of individuals by using basic collision avoidance and
simple global navigation mechanisms, it cannot be applied
to crowd simulations in complex dynamic environments and
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to simulate versatile crowd movements, such as indoor evac-
uation, gathering, queuing, zoo/museum tours, and square
walks.

In order to generate realistic crowds with various move-
ment patterns and environmental adaptability, the movement
of virtual pedestrians in a crowded environment needs to con-
sider several constraints, including global navigation towards
the target, local collision avoidance with surrounding pedes-
trians and static obstacles, and social interactions that lead
to self-organization and emergent phenomena in crowds. In
this paper, we present a novel velocity-based crowd simula-
tion framework through data-driven optimization by taking
all the constraints for making decision into account.

Specifically, the decision-making process of each agent is
formulated as an optimization problem, which can be solved
by selecting a velocity from the real-world crowd dataset that
tends to minimize a newly defined crowd energy metric. Sev-
eral essential energy terms are developed in the crowd energy
formula. These terms consider the agent’s movement conti-
nuity, global navigation, collision avoidance, and group for-
mation control simultaneously. Each energy term is defined
as a factor related to a local optimal velocity, and the agent’s
decision-making is to weigh these local optimal velocities. In
order to make individual behavior in the simulation as real-
istic as that in real crowd, we calibrate the model parameters
using real-world crowd data. Figure 1 shows several crowd
examples generated by our approach, including walking on
zebra crossing, queuing and aggregation in front of the build-
ing gate, indoor evacuation, and army formation transform.

The main contributions of this work are as follows:

– A novel, unified, and calibrated approach based on data-
driven optimization to simulate versatile crowd move-
ments with environmental adaptability.

– A velocity-based crowd energymetric for similaritymea-
surement, by considering movement continuity, global
navigation, local collision avoidance, and group forma-
tion control.

– A group formation control mechanism based on mean-
shift clustering to guide the self-organized crowd move-
ment in a dynamically changing environment.

2 Related work

2.1 Crowd simulationmodels

In crowd simulation, there are two kinds of widely used
crowd control models according to the expressive level of
simulation details: fluid-based macroscopic and agent-based
microscopic methods. Macroscopic models [25,35] use an
analogy with fluid or gas dynamics to describe how crowd
density and velocity change over time using partial differen-
tial equations. They are ignored detail of crowd, so these kind
of methods are not suitable for low-density crowds. In con-
trast, the microscopic model treats each person in the crowd
as an intelligent agent with its own properties and goals. Each
agent makes a decision individually from its neighborhood
information for every time step. Researchers have developed
a variety of microscopic control models, including force-
based [10] and velocity-based [2,8,26] models.

In a force-based model, each agent receives virtual forces
generated from the spatial or social relationship between
the agent and its neighbors. Helbing et al. [10,11] proposed
the Social Force Model (SFM) for normal and panic situa-
tions. Pelechano et al. [29] proposed an individual control
in dense environments. Karamouzas et al. [14] defined a
time-to-collision dependent potential energy whose deriva-
tives generate forces.Another streamof researchers proposed
the velocity-basedmodel, where each agent selects a velocity
that minimizes a given cost function [2]. The velocity-based
model is usually less sensitive to parameter choice and more
stable in a large time step than the force-based model.

2.2 Data-drivenmulti-agent simulation

To enhance the visual realismof crowd simulation, there have
been several attempts to introduce real captured crowd data
into multi-agent simulation. These methods try to simulate
virtual crowds by learning behavior patterns from real-world
samples [12,17]. Seemingly natural crowd behaviors can be
produced by directly coping the real-world trajectories or
pre-computed patches [15,16,21]. Although these methods
can generate crowd movements similar to those observed in

Fig. 1 Examples of various virtual crowds with different movement patterns simulated by our framework: walking on zebra crossing (the first),
aggregation and queuing at the building entrance (the second), indoor evacuation (the third), and army formation transform (the fourth)
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crowd samples, they lack consideration of scene adaptabil-
ity. Ren et al. [32] simulated the heterogeneous multi-agent
systems by combining data-driven with physics-based sim-
ulation methods. Due to the model versatility for different
agent types, the model only uses parameters to adjust crowd.
It is difficult to simulate frequently changing crowds.

Recently, techniques based on neural networks have
received increasing attention in the crowd simulation com-
munity. [18] presented an agent-based deep reinforcement
learning approach for crowd navigation, which learns a sin-
gle unified policy that can adapt all the scenarios. Generative
adversarial networks can be used to learn the properties of
real-world crowd datasets [1] and generate new trajecto-
ries with matching patterns. However, convincing simulation
results rely on a large quantity of real-world crowd data.

2.3 Group simulation

A group in a crowd is defined as a subset of agents which
desire to move together [13,33]. Musse et al. [23] simu-
lated the emergent group behavior with the consideration of
the relationship between groups, and later presented a hier-
archical model to control groups with different degrees of
autonomy [24]. The social force model [11] was extended
to simulate groups by adding several attractive forces [28] or
including social interactions amongpeoplewalking in groups
[22]. The velocity obstacle approach can also be extended
to model group behaviors in crowd simulation [9,33]. In

addition, some common human behaviors, such as leader-
follower behaviors [31] and following behaviors [19], were
explored and simulated through experimental studies.

3 Method overview

The pipeline of our approach is illustrated in Fig. 2. In the ini-
tialization stage, we preprocess different types of real-world
crowd datasets by uniformly converting them into velocity
representations and dividing the velocity set into several sub-
sets according to the magnitude of the velocity. We establish
an underlying goal-directed direction field over the free space
in an environment, which could be used for directing agents
in a simulation. Each agent is initialized by randomly setting
an initial position and randomly selecting an initial veloc-
ity from the velocity dataset. In each step of the simulation,
we treat the motion decision-making or local navigation pro-
cess of each agent as an optimization problem, which can be
solved by selecting a velocity from the dataset that tends to
minimize a newly defined crowd energy metric. The energy
metric is defined based on the locomotion and dynamics
rules of agents, including velocity continuity and consis-
tency, velocity expectation, collision avoidance, movement
direction control, and group formation in the surrounding
environment for group formation control. The influence of
each energy term is modeled as a local optimal velocity, and

Fig. 2 The pipeline of our approach. In the initialization stage (left),
we create a velocity dataset based on real data. For a virtual scene, we
initialize the positions of agents of a crowd and calculate the direc-
tion field according to the scene geometry. In the simulation stage
(right), we simulate crowds with various movement patterns in diverse
environments. The decision-making of each agent is formulated as an

optimization problem (see the data-driven optimization stage, middle),
whose energy function considers velocity similarity, velocity consis-
tency, velocity expectation, movement direction, collision avoidance,
and group formation jointly. Our approach can control crowd patterns,
such as queue, aggregation, and walking in tows in the same framework
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the final individual’s decision-making is a trade-off among
different local optimal velocities.

3.1 Initialization

Velocity Set Preparation:From the real-world crowd trajec-
tories, we calculate the velocity of each agent in each frame
and obtain the velocity set V = {vi,t , vi,t−1}, where vi,t is
the velocity of an arbitrary agent i at frame t , and vi,t−1 is the
velocity in the previous frame. Considering that the velocity
between two adjacent frames can only change within a small
range due to the temporal continuity of human movement,
we therefore sort the set V in ascending order according to
velocity magnitude

∣
∣vi,t

∣
∣ and divide it into several velocity

subsets. In each search process, only the subset where vi,t
is located and its adjacent subsets are searched, which can
greatly improve the search efficiency of the algorithm.

In our implementation, the real-world crowd dataset for
data-driven optimization is provided by the ETH [30] and
UCYPedestriandatasets [20],which containmore than1,600
pedestrian trajectories in five scenes (ETH, Hotel, Univ,
Zara1 and Zara2). We divide the velocity set V containing
61,995 individual velocities into 100 subsets, and in each
search, the search range is 6 adjacent subsets.

Direction FieldComputation:Ourmethod computes the
direction field for each distinct group of agents based on the
static description of the environment and specified goal posi-
tions. These direction fields are smooth with no local minima
and used to guide agents to their corresponding goals. Simi-
lar to [5,27], the computation of the direction field requires a
discretization of free space in the environment. Here, we use
regular grids (Fig. 3), in which each cell of the grid stores a
vector representing the ideal moving direction, the distance
from the current grid to the target, and the crowd density
information in the current grid. Then, we use a variant of
Dijkstra’s algorithm to propagate costs throughout the grid,

Fig. 3 Illustration of the directionfield for the agent’s global navigation.
The black dot represents the agents’ movement target and the gray grids
denotes the static obstacles in the environment

starting with zero costs associated with the goal position. At
each instance of the computation, the path cost at a given cell
is evaluated through a linear combination of the calculated
path costs of two neighboring cells. In this way, keeping track
of the direction of the optimal path taken at each grid cell
yields a smooth navigation vector field over the entire free
space in the environment. For more implementation details,
we refer to [27]. It is worth noting that the direction field will
not be recomputed at each time step of the simulation, but
only when the goal position changes.

3.2 Data-driven optimization

At each time step of the simulation, the velocity of an agent is
updated by finding the velocity in the input velocity sample
sets that is most similar to its state in the synthesized crowd.
Formally, let vi, j denote the velocity of agent i at frame
j to be updated in simulation, and vr ,k denote the velocity
candidate in dataset V , indicating the velocity of agent r at
frame k, its crowd energy E is defined as follows:

E = wvEv + wpEp + weEe + wcEc + wd Ed + wgEg,

(1)

where the velocity similarity term Ev measures the current
velocity similarity between the agent i and r , the velocity
consistency term Ep measures the similarity between the
two agents’ velocities at their respective previous frames,
the velocity expectation energy term Ee measures the sim-
ilarity between vr ,k and the desired velocity of the agent i ,
the collision avoidance energy term Ec is introduced to pre-
serve the agent i’s safe distance with its neighbors and static
obstacles during movement, the movement direction energy
term Ed measures the similarity between the direction of
vr ,k and the expected movement direction of the agent i ,
which is obtained from the precomputed direction field, and
the group formation energy term Eg is further introduced
to describe the interaction of agent i’s interactions with sur-
rounding neighbors and generate various group movement
patterns in crowds. wv,wp, we, wc, wd and wg are normal-
ized weight parameters of these energy terms.

4 Energy term calculation

4.1 Velocity-related energy terms

Ev , Ep, and Ee are three energy terms related to agent i’s
velocity, which are used to ensure the individual’s smooth
continuous movement and the expectation of moving at the
desired velocity.

In the real-world crowd, humans cannot change their
motion state frequently or suddenly within a time step.
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Inspired by this observation, in the simulation, we design
the velocity similarity term Ev to represent the tendency of
individual velocity changes within a reasonable range. This
energy term measures the similarity between vi, j and vr ,k in
terms of movement direction and velocity magnitude, which
is defined as:

Ev = wv1
∥
∥
∥
∥vi, j

∥
∥ − ∥

∥vr ,k
∥
∥
∥
∥
2 + wv2

∥
∥ni, j − nr ,k

∥
∥
2 , (2)

where
∥
∥ni, j − nr ,k

∥
∥
2 is designed for direction similarity,

and
∥
∥
∥
∥vi, j

∥
∥ − ∥

∥vr ,k
∥
∥
∥
∥
2 is designed for velocity magnitude

similarity. ni, j and nr ,k are, respectively, the unit vector rep-
resenting the moving direction of agent i at frame j and that
of the candidate r at frame k in the velocity dataset. wv1 and
wv2 are weight parameters. It is noteworthy that measuring
the similarity of velocity magnitude and direction separately
with different weight parameters can expand the search range
in the velocity set, thereby effectively avoiding individual
movement concussion in the simulation.

In addition to keeping the individual’s velocity change
within a reasonable range, the individual’s velocity change
is also required to be continuous to ensure the continuity of
movement and the smoothness of the trajectory in the simu-
lation. As defined in Eq. 3, we take the individual’s previous
frame speed into account and introduce the velocity consis-
tency term Ep:

Ep = ∥
∥vi, j−1 − vr ,k−1

∥
∥
2 , (3)

where vi, j−1 and vr ,k−1 are the velocities of the agent i and
r at the previous frame, respectively.

The velocity expectation energy term Ee describes indi-
vidual i’s motivation to move with an expected velocity V e

i ,
which only measures the similarity of velocity magnitude:

Ee = ∥
∥V e

i − ∥
∥vr ,k

∥
∥
∥
∥
2 , (4)

where V e
i is a constant used as a personalized attribute of the

agent i , defined during the initialization step.

4.2 Collision avoidance energy term

Collision avoidance is achieved through the energy term Ec.
Taking the neighboring agents (as dynamic obstacles) and
the environment (as static obstacles) as input, we compute
the collision-free velocity vci, j for the agent i by using reli-
able local collision avoidance algorithms, such as social force
model (SFM) [11] and optimal reciprocal collision avoid-
ance (ORCA) [3]. Then the velocity vci, j is compared with
the candidate velocity vr ,k in the velocity set by measuring
the similarity, which leads to the following formula for Ec:

Ec =
∥
∥
∥vci, j − vr ,k

∥
∥
∥
2
. (5)

Fig. 4 Different crowd movement patterns generated by our approach
combined with different collision avoidance algorithms (a SFM, b
ORCA)

Our approach can be easily integrated with any local col-
lision avoidance algorithm to obtain vci, j . Different collision
avoidance mechanisms lead to different crowd movement
patterns. As shown in Fig. 4, in a scene where two groups
(red and white) face each other, the agents that use SFM to
avoid collisions tend to gather in small piles, while the agents
using ORCA are scattered to avoid collisions.

4.3 Movement direction energy term

The movement direction energy term Ed is introduced for
global navigation, which imitates the agent’s movement
toward its goal. Through the constructed direction field over
the entire environment during initialization, the ideal (fastest)
movingdirectionof any agent canbeobtained from themove-
ment direction stored in the grid cell where it is located (Fig.
3). Correspondingly, the energy for movement direction con-
trol is presented as:

Ed =
∥
∥
∥ndi, j − nr ,k

∥
∥
∥
2
, (6)

where ndi, j is the unit vector denoting the desired moving
direction of agent i at frame j , nr ,k is the unit vector repre-
senting the moving direction of agent candidate r at frame k
in the velocity dataset.

4.4 Group formation energy term

Using the five types of energy items introduced above can
generate natural-looking macroscopic crowd behaviors. But
in addition to the basic collision avoidance between individu-
als (Fig. 5a), it is difficult to describe the complex interaction
behaviors between individuals and simulate various group
behavior patterns, such as array, queue, aggregation, and
evacuation. Furthermore, people often change their behav-
ior states in the real world. For example, people come out of
a crowded subway station, cross the square, and then walk
to the entrance of a shopping mall to queue. However, pre-
vious methods usually use uniform behavior control rules
for the entire crowd, which leads to consistent behaviors of
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(a)

(b)

(c) (d)

̅

̅

vector of
direction field

,

Fig. 5 Various crowdmovements simulated by our approach; awithout
the group formation energy term and b–c with different settings of
positional attractions: b two subgroup formed by manually specified
attractors, and c two dynamic subgroup formed using automatically
specified attractors by mean-shift. In d, we give an illustration of the
mean-shifting process applied on the feature space (blue dots) of all
agents for crowd aggregation in a square

individuals in the crowd and lack of environmental adapt-
ability [32]. In order to generate various movement patterns
of the crowd in a dynamically changing environment, we
define a group formation velocity vsi, j to imitate the agent
i’s decision-making under the influence of the surrounding
local environment at frame j , and correspondingly, the group
formation energy term Eg is given as:

Eg =
∥
∥
∥vsi, j − vr ,k

∥
∥
∥
2
. (7)

Positional attraction: Specifically, the influence of the
surrounding local environment on individual decision-
making is often manifested as position attractiveness [33].
Different definitions of position attractiveness lead to differ-
ent formulations of group formation velocity vsi, j , thereby
generating different crowd behavior patterns in simulation.
Basically, a certain point in the environment or a certain indi-
vidual in the crowd can be set as a source of attraction to guide
individuals, thereby generating the aggregation and guide-
follower crowd movement patterns. For the queuing crowd
(Fig. 5b), the individual in front of each individual can be
regarded as the source of positional attraction, so that they
follow the individual in front of them and make decisions
based on the distance between them. Formally, we define the
group formation velocity of the agent as:

vsi, j = δi (pai, j − pi, j ), (8)

where pai, j is the positional attraction source, pi, j is the
position of agent i at frame j , δi is the weight of distance
influence.

Mean-shift clustering: By specifying the attraction
points, rich agent interactions and various group movement
patterns can be realized in the crowd. However, it is difficult

to manually specify the attraction points for the scenarios
where the positional attraction sources of agents are different
or dynamically changing, such as crowds walking in twos in
a square and crowds dynamically gathering at multiple exits
during evacuation. In such a movement pattern where a self-
organized crowd gathers into small groups (Fig. 5b), people
usually tend to walk to areas with high crowd density around
them.

Inspired by this observation, we introduce the mean-
shift clustering method [5,6] to automatically compute the
dynamic attraction point. The feature space is spanned by
the position of each agent in crowd. As illustrated in Fig.
5d, a window function is selected as a kernel and the mean-
shift algorithm iteratively shifts this kernel to a higher density
region until convergence. Each shift is defined by a mean-
shift vector pointing toward themaximal increasing direction
in terms of density. Here, the kernel is shifted to the centroid
(or the mean) of all points falling in the local support of the
window function. The centroid is called the mean point and
is used as the attraction point for group formation in crowd
simulation.

Specifically, the mean point of agent i can be computed
as follows:

1) Initialize the mean point p̄with the agent i’s position pi, j
at frame j .

2) Apply a window function ω(p, p̄) to control the size of
agents considered in mean-shift iteration:

ω(p, p̄) =
{

1, θ(p, p̄) ≤ W and L(p, p̄) ≤ R,

0, otherwise,
(9)

where W and R control the window size (W = 60◦ and
R = [1.5, 6] in our implementation). p is the position of
an agent in crowd, L(p, p̄) is the distance between the
directions of the mean point p̄ and agent, and θ(p, p̄) is
the angle between the direction field of the grid (where
the mean point p̄ is located) and the vector pointing from
p̄ to p. If ω(p, p̄) equals 0, the effect of this agent will
not be considered in the next simulation step.
For each agent i within the window, we compute its
weight for re-estimating themean using a kernel function
k(pi , p̄):

k(pi , p̄) = e−0.5gi e−0.05li e−2di , (10)

gi =
∥
∥
∥
∥

θ(pi , p̄)

W

∥
∥
∥
∥

2

, li =
∥
∥
∥
∥

L(pi , p̄)

R

∥
∥
∥
∥

2

,

di =
∥
∥
∥
∥
∥

s(pi )

s0i

∥
∥
∥
∥
∥

2

, (11)

where s(pi ) represents the length of the rest path from
the agent i’s current position pi to the target, and s0i gives
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the length of agent i’s path from its initial position to the
target.

3) Compute the new mean p̄new using the weighted mean
of the density in the window as follows:

p̄new =
∑

i∈A k(pi , p̄)pi
∑

i∈A k(pi , p̄)
, (12)

where A is the set of agents, and pnew means the new
position in the mean-shift algorithm.

4) Shift the window center to p̄new and go back to Step 2
if the terminal condition has not been met. If the num-
ber of iterations exceeds 100 times or the deviation of
p̄new is less than 0.01, the algorithm terminates. p̄new is
employed as the positional attraction andwe compute the
group formation velocity vsi, j for agent i at frame j by
Eq. 8.

4.5 Parameter calibration

In our proposed method, there are totally 8 weight parame-
ters (wv1, wv2, wp, we, wc, wd , wg, δi ) related to the energy
terms. In order to avoid the tedious non-trivial tuning of these
parameters in a trial-and-error manner, we use the Simulated
Annealing algorithm [7] to calibrate parameters. Given the
real-world traffic data, the calibration task is to determine the
specific optimal parameter set of the proposedmodel that best
fits the given trajectory for each crowd agent.

The simulated annealing algorithm works as follows.
First, the 8 parameters are randomly initialized within
the range of [1, 10]. We set the initial temperature as
1, 000, 000◦C and define the temperature reduction function
as Tnew = 0.25 ∗ Tcurrent according to the geometric reduc-
tion rule, where Tcurrent is the current temperature and Tnew
is the new temperature. For each temperature, the number of
iterations is set to 500, which leads to 500 parameter sets for
our simulation model.

As the temperature drops, the range of parameters grad-
ually changes from [0.01, 0.1] to [0.01, 0.01] with each
iteration r . The created parameter set is applied to our simu-
lation model to generate the virtual movement of the crowd
agent. Then, we measure the error Fv

r between simulated
behavior and the real-world agent trajectory in termsof veloc-
ity, defined as follows:

Fv
r = 1

N

N
∑

j=1

∥
∥
∥vsimj − vdataj

∥
∥
∥
2
, (13)

where vsimj and vdataj are the simulated velocity and the given
velocity of the agent at an arbitrary frame j , respectively.
N is the total number of frames of agent movement. We
compare Fv

r with the error in the previous iteration Fv
r−1

by ΔF = Fv
r − Fv

r−1. According to the value of ΔF , the
parameters generated in this iteration will be accepted with
a certain probability ρ:

ρ =
{

1, if ΔF ≤ 0;
e−ΔF/T , if ΔF > 0,

(14)

where T is the current temperature.
Repeat the above procedures and decrease the temperature

according to the reduction function, the annealing process
stops until the termination conditions are met. The termina-
tion criterion is either the end temperature is less than 1.0
or the change of error Fv

r is less than 0.01. The calibration
process takes about eight hours for 40 trajectories.

Using the calibrated parameter set, we can achieve a sim-
ulated crowd similar to the given real-world crowd data. In
order to further simulate complex crowd movements in vari-
ous scenarios, fine-tuning can be further made based on these
calibrated parameters.

5 Dynamic crowd simulation

In order to exhibit various movement patterns in the same
crowd scenario, the positional attraction sources can be
defined in different ways for different agent groups. It is
also possible to simulate the agent movement in a dynam-
ically changing environment by switching the direction field
according to its dynamically changing target and the posi-
tional attraction computingways. Specifically, in amulti-exit
crowd evacuation scenario, we separately set up a direction
field for the entire environment with each exit as the target
position during initialization, where each grid stores the dis-
tance from the current position to the target and the crowd
density in the grid. During the evacuation process, the agent
will dynamically select the appropriate exit and switch the
direction field according to the density of the crowd around
each exit and the distance from each exit.

The general velocity-based framework we proposed can
be easily integrated with other crowd simulation methods.
Specifically, the computation method of group formation
velocity can be replaced by an arbitrary microscopic group
modelingmethod. The desiredmoving direction in themove-
ment direction energy term can be obtained from any global
navigation mechanism. Similarly, any collision avoidance
approach can be used to obtain the collision-free velocity
in the collision avoidance energy term.

We first validated our approach in an autonomous vehicle
navigation test scenario, where a virtual crowd of 40 pedes-
trians crosses an urban road without traffic lights. In order to
test the decision-making ability of the autonomous vehicle
in different crowd situations, we generated three different
behavior patterns of crowds by defining positional attrac-
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(c) aggregated subgroups

(b) queuing crowd

(a) freely moving pedestrians

Fig. 6 Example crowd simulation results with different movement pat-
terns generated by our approach for autonomous vehicle testing: a freely
moving pedestrians, b queuing crowd, and c aggregated subgroups. The
blue curve in each image shows the velocity of the autonomous vehicle

tion sources in different ways: freely moving pedestrians,
queuing crowd, and aggregated subgroups. When describing
the mutual interaction between the car and pedestrians, we
employ themethod ofChao et al. [4] for car decision-making.
Figure 6 shows the simulation result and the velocity curve
of the autonomous vehicle in each case. It can be seen that
the decision-making of the autonomous vehicle varies when
facing crowds with different movement patterns. This proves
the necessity and effectiveness of ourmethod to simulate var-
ious crowd behaviors for application in autonomous vehicle
testing.

6 Simulation results

6.1 Comparison with real-world crowd dynamics

Evacuation: We use virtual crowds to reproduce the real-
world crowd evacuation experiment organized by the Uni-
versity of Melbourne. The escape layout is designed to build
four panels in the basketball stadium, one of which has four
narrow exits (only one person can pass through at the same
time). In this scenario, people dynamically choose the exit

7511=emarF(c)433=emarF(a)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Velocity (m/s)

(b) Frame = 628 

Fig. 7 The snapshots of video of the real-world crowd evacuation
experiment (top), our simulation result (middle), and the heatmap of
pedestrian velocity distribution (bottom)

according to the dynamically changing environment, and
after escaping, they will also choose to go left or right. Figure
7 shows the snapshots of the experimental video (top) and our
simulation result (middle). It can be seen that various move-
ment patterns, such as self-organized queuing, aggregation at
the exit, and spreading movement pattern after escaping, can
all be reproduced by our approach. This can be achieved by
assigning different definitions of positional attraction sources
to different groups of agents.

In addition, an agent’s movement in this dynamically
changing environment is simulated by switching the direc-
tion field according to its dynamically changing target and
the positional attraction computingways. Specifically, we set
up multiple direction fields for the entire environment with
each exit as the target position during initialization, where
each grid stores the distance from the current position to the
target and the crowd density in the grid. During the evacu-
ation, the agent will dynamically select the appropriate exit
and switch the direction field according to the density of the
crowd around each exit and the distance from each exit.

The bottom images in Fig. 7 shows the heatmap of the
pedestrian velocity distribution in different areas during the
simulation. At the 334th frame, the individual slows down
after passing the right exit, resulting in congestion and slower
agent velocities at the right exit. At the same time, there is
more space near the left exit, and the crowd leaves in an
orderly manner at a faster speed (at the 628th frame). More-
over, it can be observed that some people change their target
exit from the right to the left in order to leave more quickly.
After the evacuation is completed (at the 1157th frame), the
crowd in the open area moves at the desired speed, resulting
in a more even distribution of crowd velocity.
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(a) (b)

Fig. 8 The comparison between a the rendering of real-world crowd
movements from ETH-Univ dataset, and b our simulation result with
this dataset as input
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Fig. 9 Comparison of crowd speed distributions between real crowd
data from the ETH-Univ dataset (red), and our simulated crowd (blue)
with this dataset as input

Square: We simulate the crowd behaviors in a square
using the real-world square crowd dataset ETH-Univ [30]
as input, and compare the generated crowd dynamics with
that in the real-world sample. As shown in Fig. 8, the virtual
crowd presents similar behaviors as the ones in the real-world
scene, especially the movement pattern of walking in twos.
Figure 9 also gives the velocity probability distribution of
the simulated crowd, which matches that of the ETH-Univ
dataset.

6.2 Runtime performance

Table 1 gives the detailed parameter settings used in the above
three scenarios. It is worth noting that in the square scene,
we increase the range of the mean shift and the weight of
group formation term wg to make more agents walk in pairs.
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Fig. 10 The runtime performance of our approach with different values
of search range z of the velocity set

At the same time, in order to keep the crowd collision-free,
we increase the weight of collision avoidance wc.

The timing performance of our approach is related to the
number of agents and the search range z (representing the
number of adjacent subsets to be searched) in the velocity
set. Figure 10 shows the runtime performance of our method
in terms of agent number and search range. It can be seen
that the runtime of our data-driven optimization process is
approximately linear with the crowd size. When the search
range is set to 3, our method can simulate about 750 agents
in real time (30 fps) and about 1,750 agents at interactive
simulation rates (10 fps) . In addition, the runtime at z = 6
is twice that at z = 3, which indicates that when the search
range z of the dataset is expanded, the time spent is also
doubled. All the reported times were obtained on a 64bit
desktop machine with a 2.30GHz Inter Core CPU i5-8300H
processor and 8GB memory.

6.3 Comparison with typical approaches

We compare our method with that of Ren et al. [32] in a
benchmark scenario with a circular obstacle in the middle.
Two groups (80 agents each) are initialized on opposite sides.
The positions of targets are given in the vicinity of the ini-
tial location of the opposite group, where a lot of collisions
and interactions could happen in the middle. As can be seen
from Fig. 11(a), the agents simulated by Ren et al.’s method
avoid the obstacle and other agents in the process of moving

Table 1 Parameter values for
different scenarios

Scence wv1 wv2 wp we wc wd wg δi z

Vehicle interaction 2.9 1.0 2.5 1.0 3.0 1.9 3.0 1.0 15

Evacuation Indoor 3.9 1.0 2.5 0.2 3.2 3.5 3.0 1.5 10

Outdoor 3.9 1.0 2.5 0.2 6.0 1.0 1.9 1.0 10

Square 2.9 1.0 2.5 1.2 8.0 2.6 4.2 1.0 8
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(a) (b)

(c) (d)

Fig. 11 Snapshots of crowd movements in a scenario with a circular
obstacle in the middle: a basic collision avoidance using the method of
[32], and b queue, c aggregation, d aggregation-queue switching by our
approach

towards the target. The direction of movement is controlled
simply by pointing from the current position to the target
position, without considering the static obstacle in the envi-
ronment. In contrast, our method builds a direction field for
the entire environment as the agent’s global navigation at any
location. In addition to basic collision avoidance, the agents
simulated by our approach exhibit various interactive behav-
iors, which leads to different crowdmovement patterns, such
as queuing, aggregation, and the switching of the two forma-
tions as shown in Fig. 11b–d.

As a comprehensive framework, our method can be incor-
porated into any crowd simulation system to achieve more
realistic virtual crowd movements by replacing the calcu-
lation method of the local optimal velocity in each energy
item. Figure 12 compares our approach with that of Patil
et al. [27], which uses navigation fields to direct crowd
simulation with the Social Force Model for local collision
avoidance. The scenario comprises of four groups of 25
agents each in each corner of the environment that need to
move to the opposite corner (Fig. 12a). In the middle, there
are four square-shaped static obstacles that form narrow pas-
sages. As shown in Fig. 12b, the agent simulated by Patil
et al.’s approach can smoothly move to the target position
while avoiding collisions with other agents and obstacles.
In contrast, due to the introduction of the group formation
mechanism, the crowd generated by our approach can exhibit

(a) (b) (c)

Fig. 12 a The initial position of the crowd in the scenario, and inter-
mediate positions of the agents in the simulation. b using the method
of Patil et al. [27], and c by our approach

(a) (b) (c)

Fig. 13 Snapshots of crowd simulation in an evacuation scenario by a
ORCA, b SFM, and c our approach with the introduction of SFM

different groupmovement patterns in the same scenario (Fig.
12 c), such as aggregation, queue, array, and basic collision
avoidance similar to that in Fig. 12b.

We also compare our method to two popular local colli-
sion avoidance methods, SFM and ORCA, in a benchmark
scenario with 200 agents evacuating through three narrow
exits. It can be seen from Fig. 13a–b that the simulated crowd
using only ORCA/SFM will be blocked at the middle exit,
while the other two exits have very few people. In contrast,
by introducing SFM into our framework, agents in the sim-
ulated crowd will dynamically choose exits with relatively
few people, which is also in line with the real-world crowd
dynamics.

6.4 Perceptual study

Weconducted a user study to understand and analyzewhether
the virtual crowd simulated by our method meets people’s
perception of realistic crowds. We rendered all the 14 sim-
ulated crowd animations and 1 ETH-Univ crowd dataset
shown in the figures above. Thenwe recruited 39 participants
to participate in this user study. All the participants are grad-
uate students aged between 20 and 30, with normal visions.
At each time they were asked to watch one crowd animation
stimulus and then rate it in terms of its perceived fidelity.
The score range is from 1 (not at all realistic) to 10 (very
realistic). To counterbalance the order of the visual stimuli,
the stimuli were displayed in a random order for each par-
ticipant. The participants were allowed to view an animation
stimulus many times before scoring it.
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Fig. 14 Plausibility scores of the user study. a Statistics of the simulated
crowd in various scenarios generated by our approach. b Comparison
statistics between our simulated crowd dynamics and the real-world
crowd samples. c Statistics for comparison betweenRen et al’s approach

[32] and ours. d Experimental outcomes comparing our method with
the method of Patil et al. [32]. e Comparative statistics between SFM,
ORCA, and our approach

The outcomes of the user study are reported inFig. 14.Var-
ious scenarios simulated by our method have got an average
score of 8, which shows that people feel that our generated
crowd behaviors are very realistic. However, the queuing
scene shown in Fig. 11b has a slightly lower mean score 7,
because users feel that the queuing movement pattern does
notmatch this scene. Figure 14b shows thefidelity score com-
parison between our simulated crowd and the real captured
data from ETH-Univ. In the same rendering environment
(Fig. 8), the mean scores of the two are very close (p-value
= 0.146 > 0.05), which is enough to prove that our simu-
lated crowd is so realistic that it is indistinguishable from the
real crowd. Furthermore, in the score comparison with other
typical simulation methods (Ren et al’s approach [32], Patil
et al’s approach [27], SFM and ORCA), the crowd animation
by our method obtains higher mean scores, due to the richer
crowd movement patterns and more vivid crowd behaviors
(Fig. 14c–e).

7 Conclusion

We present a comprehensive framework for crowd simu-
lation that allows interactive control of global navigation,
local collision avoidance, and group formation. Each con-
trol is integrated into a velocity-based crowd energy metric
to measure the similarity between the agent’s required sim-
ulated velocity and a given velocity sample. Through a
data-driven optimization process, our approach can simulate
crowd behaviors in a dynamically changing environment and
generate various movement patterns in the same scenario.
Furthermore, our approach can be applied to new scenarios
beyond the input dataset and simulate agent behaviors that
may differ from those captured by the input data.

As a common problem of data-driven methods, the com-
position of the input real-world crowd trajectory data directly
affects the simulation results and time efficiency of our
method. Although our method can deal with the presence
of noise in the input data, it has to expand the velocity search
range to find the local optimal speed, this will slow down the
update efficiency of the crowd. Moreover, if the velocity dis-
tribution of the input samples is sparse, the simulated agent is
prone to abnormal behaviors with discontinuous speed, such
as jitter and drift.

In the future, we plan to extend our method to introduce
full-body motions in the animation of crowd characters. Var-
ious types of spatiotemporal information about the ongoing
character interactions (e.g. distances, relative positions or
velocities, time to collision) can be calculated during the
simulation process and used to trigger specific character ani-
mations. Also, observations show that different people will
achieve the same goal in different manners in terms of the
underlying personality, we plan to emulate personality traits
of individuals within a crowd. Last but not least, we are inter-
ested in integrating our approach with various crowd editing
tools and algorithms. In this way, users can flexibly refine
the quality of crowd behaviors directly synthesized by our
approach.
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